Breast Cancer Survivability Prediction via Classifier Ensemble

نویسندگان

  • Mohamed Al-Badrashiny
  • Abdelghani Bellaachia
چکیده

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Naı̈ve Bayes algorithms for the underlying classifiers and Naı̈ve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set. Keywords—Classifier ensemble, breast cancer survivability, data mining, SEER.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability

Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. ‎In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set‎. ‎Therefore‎, ‎developing a machine for p...

متن کامل

The prediction of lymphedema via the combination of the selected data mining algorithms

Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...

متن کامل

A Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets

Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...

متن کامل

An Approach with Support Vector Machine using Variable Features Selection on Breast Cancer Prognosis

Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of machine learning. In this paper we have used an approach by using support vector machine classifier to construct a model that is useful for the breast cancer survivability prediction. We have used both 5 cross and 10 cross validation of variable selection on input feature vectors and the perfo...

متن کامل

Toward breast cancer survivability prediction models through improving training space

Due to the difficulties of outlier and skewed data, the prediction of breast cancer survivability has presented many challenges in the field of data mining and pattern precognition, especially in medical research. To solve these problems, we have proposed a hybrid approach to generating higher quality data sets in the creation of improved breast cancer survival prediction models. This approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016